## Exercise 71

Between $0^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$, the volume $V$ (in cubic centimeters) of 1 kg of water at a temperature $T$ is given approximately by the formula

$$
V=999.87-0.06426 T+0.0085043 T^{2}-0.0000679 T^{3}
$$

Find the temperature at which water has its maximum density.

## Solution

The domain of the function is $0 \leq T \leq 30$. Take the derivative.

$$
\begin{aligned}
V^{\prime}(T) & =\frac{d}{d T}\left(999.87-0.06426 T+0.0085043 T^{2}-0.0000679 T^{3}\right) \\
& =999.87(0)-0.06426(1)+0.0085043(2 T)-0.0000679\left(3 T^{2}\right) \\
& =-0.06426+0.0170086 T-0.0002037 T^{2}
\end{aligned}
$$

Set $V^{\prime}(T)=0$ and solve for $T$.

$$
\begin{gathered}
-0.06426+0.0170086 T-0.0002037 T^{2}=0 \\
T=\frac{-0.0170086 \pm \sqrt{(0.0170086)^{2}-4(-0.0002037)(-0.06426)}}{2(-0.0002037)} \\
T=3.96651 \quad \text { or } \quad T=79.5318
\end{gathered}
$$

$T=3.96651$ is within the interval $0 \leq T \leq 30$, so evaluate the function here.

$$
\begin{aligned}
V(3.96651) & =999.87-0.06426(3.96651)+0.0085043(3.96651)^{2}-0.0000679(3.96651)^{3} \\
& \approx 999.745 \mathrm{~cm}^{3} \quad(\text { absolute minimum })
\end{aligned}
$$

Evaluate the function at the endpoints.

$$
\begin{aligned}
V(0) & =999.87-0.06426(0)+0.0085043(0)^{2}-0.0000679(0)^{3}=999.87 \mathrm{~cm}^{3} \\
V(30) & =999.87-0.06426(30)+0.0085043(30)^{2}-0.0000679(30)^{3} \\
& \approx 1003.76 \mathrm{~cm}^{3} \quad \text { (absolute maximum) }
\end{aligned}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $0 \leq T \leq 30$.

The graph below illustrates these results.


Density is mass over volume:

$$
\rho=\frac{m}{V}
$$

The density is at a maximum when the volume is at a minimum. Therefore, when the temperature is

$$
T \approx 3.96651^{\circ} \mathrm{C},
$$

the density is at a maximum.

